1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Given a binary search tree (BST) with duplicates, find all the mode(s) (the mo
# st frequently occurred element) in the given BST.
#
# Assume a BST is defined as follows:
#
#
# The left subtree of a node contains only nodes with keys less than or equal t
# o the node's key.
# The right subtree of a node contains only nodes with keys greater than or equ
# al to the node's key.
# Both the left and right subtrees must also be binary search trees.
#
#
#
#
# For example:
# Given BST [1,null,2,2],
#
#
# 1
# \
# 2
# /
# 2
#
#
#
#
# return [2].
#
# Note: If a tree has more than one mode, you can return them in any order.
#
# Follow up: Could you do that without using any extra space? (Assume that the
# implicit stack space incurred due to recursion does not count).
# Related Topics 树
# 👍 163 👎 0

class Solution:
def findMode(self, root: TreeNode) -> List[int]:
count = {}
def dfs(root, count):
if (not root): return
count[root.val] = count.get(root.val, 0) + 1
dfs(root.left, count)
dfs(root.right, count)
dfs(root, count)
maxNum = 0
list = []
for item in count.items():
if item[1] > maxNum:
list.clear();
list.append(item[0])
maxNum = item[1]
elif item[1] == maxNum:
list.append(item[0])
return list

# 执行耗时:76 ms,击败了46.02% 的Python3用户
# 内存消耗:17.2 MB,击败了58.56% 的Python3用户

也可以用简洁的写法生成list,但效率很低:

1
2
3
4
5
      maxValue = max(count.values())
return [key for key in count.keys() if count[key]==maxValue]

# 执行耗时:84 ms,击败了25.66% 的Python3用户
# 内存消耗:17.2 MB,击败了48.66% 的Python3用户

上面是最笨的想法,直接遍历节点并计数,但没有用到二分查找树的特性,也没能做到”不用额外空间“。

改进做法

二分查找树 => 中序遍历得到递增数列

问题可转化成在递增数列中找众数,空间复杂度可降为O(1):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution:
def findMode(self, root: TreeNode) -> List[int]:
cur = None
count = 0
maxCount = 0
list = []
def inorder(root):
nonlocal cur, count, maxCount, list
if root.left: inorder(root.left)
if (root.val == cur):
count += 1
else:
cur = root.val
count = 1
if count > maxCount:
maxCount = count
list = [cur]
elif count == maxCount:
list.append(cur)
if root.right: inorder(root.right)

if root: inorder(root)
return list

# 执行耗时:80 ms,击败了33.08% 的Python3用户
# 内存消耗:17.2 MB,击败了63.71% 的Python3用户

终极方法:Morris中序遍历

KMP算法的发明者之一Morris设计的神级遍历方法。

可将非递归遍历中的空间复杂度降为O(1),从而实现时间复杂度为O(N),而空间复杂度为O(1)的精妙算法。(普通递归算法要算上栈的空间,复杂度是O(n))

morris遍历利用的是树的叶节点左右孩子为空(树的大量空闲指针),实现空间开销的极限缩减。

本题在遍历时若使用Morris算法,能将空间复杂度降到O(1)。

待学习,留个坑这周补上。